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Kinetic equations with relaxation collision kernels are considered under the basic
assumption of two collision invariants, namely mass and energy. The collision kernels
are of BGK-type with a general local Gibbs state, which may be quite different from
the Gaussian. By the use of the diffusive length/time scales, energy transport systems
consisting of two parabolic equations with the position density and the energy density
as unknowns are derived on a formal level. The H theorem for the kinetic model is
presented, and the entropy for the energy transport systems, which is inherited from the
kinetic model, is derived. The energy transport systems for specific examples of the
global Gibbs state, such as a power law with negative exponent, a cut-off power law
with positive exponent, the Maxwellian, Bose–Einstein, and Fermi–Dirac distributions,
are presented.
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1. INTRODUCTION

BGK models, named after Bhatnagar, Gross and Krook, (1) have taken a prominent
role in the quest of simplifying collisional kinetic phase-space equations such as the
Boltzmann equation for gas dynamics, (2,3) for current transport in semiconductors
and plasmas, (4) for modeling transport of granular media, (5) etc. BGK models
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are based on the basic hypothesis that even large deviations from equilibrium
in collisional flows can be described by the equilibrium momentum distribution
when certain parameters are not taken as constants but made position and time
dependent. Typically, the global momentum equilibrium is determined by the
Gibbs state (function of the energy) with constant position space density, quasi-
Fermi level and temperature. In the corresponding BGK model, these constants
(or a subset of them) are replaced by functions of position and time, which are
determined from physical conservation laws corresponding to so-called collision
invariants, (2) and relaxation of the phase space distribution to the local Gibbs state
is assumed. This makes the main advantage of BGK models apparent: they describe
the collisional process ‘well’ in the sense that they feature the same equilibrium
distribution and (some of) the same collision invariants without requiring specific
information on collision details as present in the Boltzmann equation.

In the classical dynamics of ideal rarefied gases, there is conservation of
mass, momentum and energy in each individual collision of two gas atoms or
molecules, which, at least on the formal level, carries over to the whole ensemble
of gas particles, when its dynamics is represented by the Boltzmann equation.
The equilibrium momentum distribution is the Gaussian (in momentum space),
with five parameters (in six dimensional phase space!) represented by the position
density, the mean velocity vector (three dimensional parameter function) and
temperature. The corresponding classical BGK model (1) determines these three
parameters as function of space-time by computing them directly from the time-
dependent position-momentum distribution function.

Simpler BGK models can be set up. First of all, not all (five) collision
invariants need to be taken into account. For example, in semiconductor charge
transport theory, momentum and energy are transferred to the crystal lattice and
thus not conserved by the charge carrier ensembles. The corresponding Gaussian
BGK model turns out to be linear in the charge carrier distribution function. (4)

Another possibility is to prescribe a momentum equilibrium distribution
different from the Gaussian. We refer to Ref. 6, where BGK models with a general
Gibbs state and only one conservative quantity (mass) were analyzed.

In this paper we consider BGK models with a general basic Gibbs state of
zero mean velocity, which may very well be different from the Gaussian, under the
basic assumption of two conservative quantities, namely mass and energy. Thus we
consider generalized energy transport models, NOT based on a Maxwellian energy
distribution. We refer to Ref. 7 for the Maxwellian case. In particular we shall scale
the kinetic BGK models by using diffusive length/time scales and, on a formal
level, consider the diffusive limit, always in dependence of the general Gibbs state
equilibrium. Generalizing results of Ref. 7 we obtain energy transport systems
consisting of two parabolic equations with the position density and the energy
density as unknowns. Also, we discuss stationary states, and derive an entropy for
the parabolic system, which is ‘inherited’ directly from the kinetic problem.
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In Ref. 6 the diffusive limit from a one-parameter BGK model (with mass
conservation) with general Gibbs state to a generally nonlinear diffusion equation
was analyzed and convergence was proved under certain hypothesis on the Gibbs
state etc. The computations in this paper, in particular the asymptotics leading
to the generalized energy transport system from the two-parameter BGK kinetic
model (mass and energy conservation) with the general Gibbs state, are purely
formal. We expect a proof of convergence to be much more difficult than in the
already very involved one parameter case.

Energy transport models are very useful in certain physical applications,
particularly when thermal convection is important when nonlinear effects due to
kinematic convection are not of significant size. And an important application
occurs in semiconductor physics, see e.g. Ref. 7, where non-Maxwellian energy
transport systems, as derived in this paper, have big relevance, since charge carrier
(i.e., Fermion) equilibria obey the Fermi-Dirac distribution (see Example 4.4).

2. SCALED KINETIC EQUATION AND ITS FORMAL

MACROSCOPIC LIMIT

2.1. Formulation and Conservation Laws

We consider the scaled kinetic equation

ε2∂t f + ε[v · ∇x f − ∇x V (x) · ∇v f ] = G f − f, (1)

G f := γ (E f ), E f :=
(

1

2
|v|2 − µ(ρ f , e f )

)
/θ (ρ f , e f ), (2)

where the particle velocity distribution function f = f (x, v, t) depends on po-
sition x ∈ R

3, velocity v ∈ R
3, and time t > 0. The external potential V (x) is

given. The collision model is a simple relaxation kernel toward a generalized local
Gibbs state G f . The chemical potential µ(ρ f , e f ) (the Gibbs free energy per unit
mass) and the temperature θ (ρ f , e f ) > 0 are to be determined implicitly by the
conditions ∫

R
3

G f dv = ρ f (x, t) :=
∫

R
3

f dv, (3)

∫
R

3

1

2
|v|2G f dv = e f (x, t) :=

∫
R

3

1

2
|v|2 f dv, (4)

or equivalently

ρ f (x, t) =
∫

R
3
γ

([
1

2
|v|2 − µ(ρ f , e f )

]/
θ (ρ f , e f )

)
dv, (5)

e f (x, t) =
∫

R
3

1

2
|v|2γ

([
1

2
|v|2 − µ(ρ f , e f )

] /
θ (ρ f , e f )

)
dv, (6)
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where ρ f is the (macroscopic) density and e f is the internal energy per unit
volume. It should be noted that the pair of variables (µ, θ ) depends on x and t only
through (ρ f , e f ) and vice versa. The local invertibility of the map from (µ, θ ) to
(ρ f , e f ) holds (see below) while the global invertibility will be assumed in the
present work. The quantity θ (ρ f , e f )E f may be interpreted as the energy of a
particle.

Equation (1) is considered subject to initial conditions

f (x, v, 0) = f I (x, v), (7)

with f I ∈ L1
+(R3 × R

3).
If we put θ = 1 in (2) and discard the condition (4) [and (6)], we have the

relaxation kinetic model for the mass transport. The existence and uniqueness of
solutions of this model and its diffusive macroscopic limit have already been stud-
ied rigorously mathematically by Dolbeault, Markowich, Oelz and Schmeiser. (6)

In the present paper, we shall extend this result to the mass and energy transports
at the formal level.

In the above formulation, we have used the quantities conventional in ther-
modynamics and fluid dynamics. For later discussions, however, it would be con-
venient to use the quasi Fermi potential µ̄ and the energy E f per unit volume

E f (x, t) = e f (x, t) + ρ f (x, t)V (x), µ̄(x, t) = (µ(x, t) + V (x))/θ (x, t),

in place of e f and µ. Then (µ̄, θ ) is considered to depend on x and t through
(ρ f , E f , V ) and (ρ f , E f ) does through (µ̄, θ, V ), and E f is rewritten as

E f (ρ f , E f , V ) =
(

1

2
|v|2 + V (x)

)
/θ (ρ f , E f − ρ f V ) − µ̄(ρ f , E f , V ).

Because of the conditions (3) and (4), integrating Eq. (1) multiplied by 1 and
1
2 |v|2 + V (x) over the whole space of v yields the continuity and energy transport
equations:

ε∂tρ f + ∇x ·
∫

R
3
v f dv = 0, (8)

ε∂tE f + ∇x ·
∫

R
3

(
1

2
|v|2 + V (x)

)
v f dv = 0, (9)

provided that f decays sufficiently fast as |v| → ∞. Integrations of these equations
with respect to x over R

3 show that the total mass M := ∫
R

6 f I (x, v) dxdv and
the total energy U := ∫

R
6 ( 1

2 |v|2 + V (x)) f I (x, v) dxdv are preserved by the time
evolution, i.e.,

∫
R

6 f (x, v, t) dxdv = M and
∫

R
6 ( 1

2 |v|2 + V (x)) f (x, v, t) dxdv =
U for all t > 0, as far as f decays sufficiently fast as |x | → ∞.

In the present paper, we carry out formal analyses by assuming that

(i) The Gibbs state γ (E) is a nonincreasing and nonnegative continuous func-
tion of E in the interval (E1,∞), where E1 is a constant including −∞.
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The function γ has a support [E1, E2] and is continuously differentiable
on (E1, E2) with γ̇ (E) < 0, where E2 is a constant including ∞. Thus it
has an inverse γ −1 mapping into (E1, E2). Since γ is nonnegative, both
the density ρ f and the internal energy e f are also nonnegative.

(ii) In the case where E2 = ∞, there exist a δ > 0 such that γ (E) =
O(E− 7

2 −δ) as E → ∞. This assumption ensures the existence of fourth
order velocity moments, say a2 and A2, which shall appear later in the
analysis.

(iii) The external potential V is bounded from below and thus may be chosen
nonnegative. Consequently the energy E f is also nonnegative.

(iv) The map (5) and (6) between the pairs (ρ f , e f ) and (µ, θ ) is invertible.

As to the last assumption, we remark that the map (5) and (6) is locally
invertible. In fact, a straightforward calculation shows that the Jacobian is written
as

∂(ρ f , e f )

∂(µ, θ )
= 1

θ3

(∫
R

3
γ̇ (E f ) dv

∫
R

3

(
1

2
|v|2

)2

γ̇ (E f ) dv

−
(∫

R
3

1

2
|v|2γ̇ (E f ) dv

)2
)

,

the right-hand side of which is positive because of the assumption (i) and the
Cauchy–Schwarz inequality (with the corresponding condition for equality).
Therefore, the Jacobian is non-zero and local invertibility, say around an ap-
propriately chosen initial state, is assured by the inverse function theorem.

2.2. Formal Macroscopic Limit

Consider formal asymptotic expansions f = f 0 + ε f 1 + O(ε2), µ̄ = µ̄0 +
O(ε), θ = θ0 + O(ε), ρ f = ρ0 + O(ε), and E f = E0 + O(ε). Then, by going to
the limit ε → 0 in (1), we obtain, at the lowest order in ε,

f 0(x, v, t) = G0(x, v, t) = γ (E0),

where

E0 =
(

1

2
|v|2 + V (x)

)
/θ0(x, t) − µ̄0(x, t),

with

µ̄0(x, t) = µ̄(ρ0, E0, V ), θ0(x, t) = θ (ρ0, E0 − ρ0V ),

and

ρ0(x, t) =
∫

R
3

f 0dv, E0(x, t) =
∫

R
3

(
1

2
|v|2 + V (x)

)
f 0dv.
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The O(ε)-terms in (1) give

v · ∇x f 0 − ∇x V · ∇v f 0 = G1 − f 1,

which can be rewritten as

f 1 = G1 − γ̇ (E0) v · ∇x E0 + γ̇ (E0) v · ∇x V

θ0
. (10)

Now we pass to the limit in Eqs. (8) and (9) and obtain

∂tρ
0 + ∇x ·

∫
R

3
v f 1dv = 0,

∂tE0 + ∇x ·
∫

R
3

(
1

2
|v|2 + V (x)

)
v f 1dv = 0.

For the evaluation of the fluxes, we use (10). Because of the form of E f , G1 is an
even function of v. Therefore it does not contribute, and we end up with

∂tρ
0 − 1

3
∇x ·

(
∇x

∫
R

3
|v|2γ (E0) dv −

∫
R

3
|v|2γ̇ (E0) dv

∇x V

θ0

)
= 0,

∂tE0 − 1

3
∇x ·

(
∇x

∫
R

3
|v|2

(
1

2
|v|2 + V

)
γ (E0) dv

−
∫

R
3
|v|2

[(
1

2
|v|2 + V

)
γ̇ (E0)

θ0
+ γ (E0)

]
dv ∇x V

)
= 0,

or equivalently,

∂tρ
0 −1

3
∇x ·

(
2∇x (E0 − ρ0V ) + a1

θ0
∇x V

)
= 0, (11)

∂tE0 −1

3
∇x ·

(
∇x Ā1 +

[
ā1

θ0
− 2(E0 − ρ0V )

]
∇x V

)
= 0, (12)

where

an := −
∫

R
3
|v|2n γ̇ (E0) dv = −4π

∫ ∞

0
|v|2(n+1)γ̇ (E0) d|v|,

ān := −
∫

R
3
|v|2n

(
1

2
|v|2 + V (x)

)
γ̇ (E0) dv = an V + 1

2
an+1,

An :=
∫

R
3
|v|2nγ (E0) dv = 4π

∫ ∞

0
|v|2(n+1)γ (E0) d|v|,

Ān :=
∫

R
3
|v|2n

(
1

2
|v|2 + V (x)

)
γ (E0) dv = An V + 1

2
An+1.
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Here we have used the fact that E0 is a function of |v|2 rather than v itself, and
so are γ (E0) and γ̇ (E0). Note that A0 = ρ0 and A1 = 2(E0 − ρ0V ) by definition.
Equations (11) and (12) are the diffusion equations in conservative formulation.
The initial data of these equations are given by

ρ0(x, 0) = ρI (x) :=
∫

R
3

f I (x, v) dv,

E0(x, 0) = EI (x) :=
∫

R
3

(
1

2
|v|2 + V (x)

)
f I (x, v) dv,

because both the density ρ f and the energy E f are preserved in the initial layer
governed by ∂τ f = G f − f with τ = t/ε2.

The diffusion equations (11) and (12) are in conservative form but are not in
symmetric one. In order to derive the symmetric formulation, we rewrite Eq. (10)
as

f 1 = G1 − γ̇ (E0) v ·
((

1

2
|v|2 + V

)
∇x

1

θ0
− ∇x µ̄

0

)
, (13)

and use this expression for the evaluation of the fluxes. Then we obtain

ā0∂t
1

θ0
− a0∂t µ̄

0 − 1

3
∇x ·

(
ā1∇x

1

θ0
− a1∇x µ̄

0

)
= 0, (14)

(
1

2
ā1 + ā0V

)
∂t

1

θ0
− ā0∂t µ̄

0

−1

3
∇x ·

((
1

2
ā2 + ā1V

)
∇x

1

θ0
− ā1∇x µ̄

0

)
= 0. (15)

Here we have used the relations

∂tρ
0 = −ā0∂t

1

θ0
+ a0∂t µ̄

0, ∂tE0 = −
(

1

2
ā1 + ā0V

)
∂t

1

θ0
+ ā0∂t µ̄

0.

Equations (14) and (15) can be written, in terms of the new notation ϕ1 := −µ̄0

and ϕ2 := 1/θ0, as

a0∂tϕ1 + ā0∂tϕ2 − 1

3
∇x · (a1∇xϕ1 + ā1∇xϕ2) = 0,

ā0∂tϕ1 +
(

1

2
ā1 + ā0V

)
∂tϕ2

−1

3
∇x ·

(
ā1∇xϕ1 +

(
1

2
ā2 + ā1V

)
∇xϕ2

)
= 0,
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or equivalently

2∑
j=1

Ai j∂tϕ j − 1

3

3∑

,m=1

∂x


2∑
j=1

D
m
i j ∂xm ϕ j = 0, i = 1, 2, (16)

with

Ai j := a0δi1δ j1 + ā0(δi1δ j2 + δi2δ j1) +
(

ā0V + 1

2
ā1

)
δi2δ j2,

D
m
i j :=

(
a1δi1δ j1 + ā1(δi1δ j2 + δi2δ j1) +

(
ā1V + 1

2
ā2

)
δi2δ j2

)
δ
m .

It is obvious that the diffusion equation (16) is symmetric: Ai j = A ji and D
m
i j =

Dm

j i . Further, the tensors A = (Ai j ) and D = (D
m

i j ) are both positive definite,
which is shown below:

Proposition 2.1. The tensors A and D occurring in Eq. (16) are positive definite.

Proof: We first show that the tensor A is positive definite. For any nonzero vector
xi (i = 1, 2),

2∑
i, j=1

Ai j xi x j =
2∑

i, j=1

[
a0δi1δ j1 + ā0(δi1δ j2 + δi2δ j1) +

(
ā0V + 1

2
ā1

)
δi2δ j2

]
xi x j

= a0x2
1 + 2ā0x1x2 +

(
ā0V + 1

2
ā1

)
x2

2

= a0

(
x1 + ā0

a0
x2

)2

+ 1

a0

(
a0

(
ā0V + 1

2
ā1

)
− ā2

0

)
x2

2 .

Since γ̇ (E0) ≤ 0 by assumption (i) in Sec. 2.1, the Cauchy–Schwarz inequality
leads to

a0

(
ā0V + 1

2
ā1

)
=

∫
R

3
γ̇ (E0) dv

∫
R

3

(
1

2
|v|2 + V

)2

γ̇ (E0) dv

>

(∫
R

3

(
1

2
|v|2 + V

)
γ̇ (E0) dv

)2

= ā2
0 .

Therefore
∑2

i, j=1 Ai j xi x j > 0 because a0 is positive.
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In the same way, we can show the tensor D to be positive definite: for any
nonzero tensor T 


i (i = 1, 2, 
 = 1, 2, 3),

3∑

,m=1

2∑
i, j=1

D
m
i j T 


i T m
j

=
3∑


,m=1

2∑
i, j=1

(
a1δi1δ j1+ā1(δi1δ j2+δi2δ j1) +

(
ā1V + 1

2
ā2

)
δi2δ j2

)
δ
m T 


i T m
j

=
3∑


=1

(
a1

(
T 


1

)2 + 2ā1T 

1 T 


2 +
(

ā1V + 1

2
ā2

) (
T 


2

)2
)

=
3∑


=1

(
a1

(
T 


1 + ā1

a1
T 


2

)2

+ 1

a1

(
a1

(
ā1V + 1

2
ā2

)
− ā2

1

) (
T 


2

)2

)
.

Again, because of the Cauchy–Schwarz inequality,

a1

(
ā1V + 1

2
ā2

)
=

∫
R

3
|v|2γ̇ (E0) dv

∫
R

3
|v|2

(
1

2
|v|2 + V

)2

γ̇ (E0) dv

>

(∫
R

3
|v|2

(
1

2
|v|2 + V

)
γ̇ (E0) dv

)2

= ā2
1,

and this concludes
∑3


,m=1

∑2
i, j=1 D
m

i j T 

i T m

j > 0 because a1 is positive. �

3. STEADY SOLUTIONS AND ENTROPIES OF THE KINETIC

AND MACROSCOPIC EQUATIONS

It is readily seen by substitution that the Gibbs state with constant θ and µ̄ is
a steady solution of the kinetic equation (1) and correspondingly that ϕi = const
(i = 1, 2) is a steady solution of the diffusion equation (16). Although these facts
do not exclude the possibility of other steady solutions, actually they are not
allowed, as will be shown in the subsequent subsections.

3.1. H Theorem for the Kinetic Equation

Consider the function

H (x, t) := −
∫

R
3

(∫ f (x,v,t)

0
γ −1(s) ds

)
dv,
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where f solves the kinetic equation (1). The time derivative of H is calculated
with the aid of (1) as follows:

ε2∂t H (x, t)

= −
∫

R
3
γ −1( f )ε2∂t f dv

= ε

∫
R

3
γ −1( f )(v · ∇x f − ∇x V · ∇v f ) dv +

∫
R

3
γ −1( f )( f − γ (E f )) dv

= ε

∫
R

3

(
v · ∇x

∫ f

0
γ −1(s) ds − ∇x V · ∇v

∫ f

0
γ −1(s) ds

)
dv

+
∫

R
3
(γ −1( f ) − E f )( f − γ (E f )) dv

= ε∇x ·
∫

R
3
v

(∫ f

0
γ −1(s) ds

)
dv +

∫
E f <E2

(γ −1( f ) − γ −1(γ (E f )))

× ( f − γ (E f )) dv +
∫

E f >E2

(γ −1( f ) − E f ) f dv

= −ε∇x · Hflux − D( f ),

where

Hflux := −
∫

R
3

(∫ f (x,v,t)

0
γ −1(s) ds

)
vdv,

D( f ) := −
∫

E f <E2

(γ −1( f ) − γ −1(γ (E f )))( f − γ (E f )) dv

−
∫

E f >E2

(
γ −1( f ) − E f

)
f dv

= −
∫

E f <E2

γ −1( f ) − γ −1(γ (E f ))

f − γ (E f )
( f − γ (E f ))2dv

−
∫

E f >E2

(
γ −1( f ) − E f

)
f dv.

Since γ −1 is decreasing for E f < E2 by assumption, the integrand in the first term
in the last equation is nonpositive because of the mean value theorem. In addition,
the integrand in the second term is also nonpositive because γ −1 < E2. Therefore,
the last expression of D( f ) implies D( f ) ≥ 0, and the equality holds if and only
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if f is the Gibbs state, i.e., f = γ (E f ). Therefore, the function H satisfies the
inequality

ε2∂t H + ε∇x · Hflux = −D( f ) ≤ 0, (17)

and the equality holds if and only if f is the Gibbs state. This means that H is no
other than the H function for the kinetic equation (1).

Equation (17) leads to the inequality:

d

dt

∫
R

3
Hdx ≤ 0, (18)

where the condition for the equality is the same as before. Therefore in the steady
state, f must be the Gibbs state, i.e., f = γ (E f ). By substituting the Gibbs state
in Eq. (1) without the time derivative term, we see that θ and µ̄ must be constant
in the steady state:

Proposition 3.1. The steady solution of the kinetic equation (1) is a Gibbs state
with constant θ and µ̄.

3.2. Entropy Associated to the Diffusion Equation

Consider the function

S(x, t) := −
∫

R
3

(∫ γ (E0)

0
γ −1(s) ds

)
dv,

with E0 = ϕ1 + ( 1
2 |v|2 + V )ϕ2, where ϕi ’s solve the diffusion equation (16). Then

the time derivative of S is calculated with the aid of (16) as follows:

∂t S(x, t)

= −
∫

R
3
∂tγ (E0)γ −1(γ (E0)) dv

= −
∫

R
3
γ −1(γ (E0))γ̇ (E0)

(
∂tϕ1 +

(
1

2
|v|2 + V

)
∂tϕ2

)
dv

= −
∫

E0<E2

E0γ̇ (E0)

(
∂tϕ1 +

(
1

2
|v|2 + V

)
∂tϕ2

)
dv

= −
∫

R
3

((
1

2
|v|2 + V

)
ϕ2 + ϕ1

)
γ̇ (E0)

(
∂tϕ1 +

(
1

2
|v|2 + V

)
∂tϕ2

)
dv

= ϕ2

(
ā0∂tϕ1 +

(
1

2
ā1 + ā0V

)
∂tϕ2

)
+ ϕ1(a0∂tϕ1 + ā0∂tϕ2)
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= 1

3
ϕ2∇x ·

(
ā1∇xϕ1 +

(
1

2
ā2 + ā1V

)
∇xϕ2

)
+ 1

3
ϕ1∇x · (a1∇xϕ1 + ā1∇xϕ2)

= 1

3
∇x ·

[
ϕ2

(
ā1∇xϕ1 +

(
1

2
ā2 + ā1V

)
∇xϕ2

)
+ ϕ1(a1∇xϕ1 + ā1∇xϕ2)

]

− 1

3
∇xϕ2 ·

(
ā1∇xϕ1 +

(
1

2
ā2 + ā1V

)
∇xϕ2

)
− 1

3
∇xϕ1 · (a1∇xϕ1 + ā1∇xϕ2)

= 1

3
∇x ·

[
ϕ2

(
ā1∇xϕ1 +

(
1

2
ā2 + ā1V

)
∇xϕ2

)
+ ϕ1(a1∇xϕ1 + ā1∇xϕ2)

]

− 1

3

(
a1|∇xϕ1|2 +

(
1

2
ā2 + ā1V

)
|∇xϕ2|2 + 2ā1∇xϕ1 · ∇xϕ2

)

= −∇x · Sflux − DS,

where

Sflux := −1

3

[
ϕ2

(
ā1∇xϕ1 +

(
1

2
ā2 + ā1V

)
∇xϕ2

)
+ ϕ1(a1∇xϕ1 + ā1∇xϕ2)

]
,

DS := 1

3

(
a1|∇xϕ1|2 +

(
1

2
ā2 + ā1V

)
|∇xϕ2|2 + 2ā1∇xϕ1 · ∇xϕ2

)

= 1

3

(
a1

(
∇xϕ1 + ā1

a1
∇xϕ2

)2

+ 1

a1

(
a1

(
1

2
ā2 + ā1V

)
− ā2

1

)
|∇xϕ2|2

)
.

The last expression of DS implies DS ≥ 0 because of the Cauchy–Schwarz in-
equality, and the equality holds if and only if ϕi ’s are constant in x . Therefore, the
function S satisfies the entropy inequality

∂t S + ∇x · Sflux = −DS ≤ 0, (19)

where the equality holds if and only if ϕi ’s are constant in x . We call S the entropy,
Sflux the entropy flux, and DS the entropy dissipation associated to the diffusion
equation (16).

The entropy inequality (19) leads to the inequality for the total entropy∫
R

3 Sdx :

d

dt

∫
R

3
Sdx ≤ 0, (20)

where the condition for the equality is the same as before. Therefore,

Proposition 3.2. The steady solution of the diffusion equation (16) is ϕi = const
(i = 1, 2).
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At this point, we refer to the study of the symmetrization of diffusion equa-
tions and their associated entropy by Degond, Génieys, and Jüngel. (8) The set of
the diffusion equations (11) and (12) falls into the class of equations discussed
in this reference when V is zero. Although our discussion on the entropy S so
far is based on the symmetric formulation, S may be considered as the entropy
associated to Eqs. (11) and (12) and can be written as

S(x, t) = −
∫

R
3

(∫ γ (E0)

0
γ −1(s) ds

)
dv,

with E0 = [ 1
2 |v|2 − µ(ρ0, E0)]/θ (ρ0, E0). Then it can be shown that this S sat-

isfies the definition 2.1 of the associated entropy in Ref. 8; and, consequently,
the theorem 2.3 there assures that the change of variables from (ρ0, E0) to
(∂S/∂ρ0, ∂S/∂E0), i.e., the transformation to the entropic variables, symmetrizes
the diffusion equations (11) and (12) with V = 0. In fact, the direct calcula-
tion shows ∂S/∂ρ0 = µ0/θ0 and ∂S/∂E0 = −1/θ0 with µ0 = µ(ρ0, E0), i.e.,
∂S/∂ρ0 = −ϕ1 and ∂S/∂E0 = −ϕ2. Therefore, the variables ϕ1 and ϕ2 intro-
duced in Sec. 2.2 are essentially the same as the entropic variables in Ref. 8
when V = 0. It is also easily seen that ρ0 = ∂S∗/∂ϕ1 and E0 = ∂S∗/∂ϕ2, where
S∗ = S + ρ0ϕ1 + E0ϕ2 is the Legendre transformation of S.

4. EXAMPLES

We shall give some examples of the Gibbs state and the corresponding dif-
fusion equations. As is obvious from the definition of the tensors A and D, the
symmetric diffusion equation (16) is necessarily explicit, while the diffusion equa-
tions (11) and (12) for the density ρ0 and the energy E0 are not always. In each
example, we start with the former and turn to the latter.

Example 4.1. A power law with negative exponent, γ (E) = C E−k , with k >

7/2 and C being a positive constant. The chemical potential is assumed non-
positive (µ ≤ 0), so that E ≥ 0.

We first derive the coefficients an’s (n = 0, 1, 2, 3).

an := −
∫

R
3
|v|2n γ̇ (E0) dv

= Ck

∫
R

3
|v|2n(E0)−k−1dv

= 4πCk

∫ ∞

0
|v|2(n+1)(ϕ1 + ϕ2V )−k−1

(
1 + |v|2

2

ϕ2

ϕ1 + ϕ2V

)−k−1

d|v|
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= 2n+ 5
2 πCk(ϕ1 + ϕ2V )n−k+ 1

2 ϕ
−n− 3

2
2

∫ ∞

0
sn+ 1

2 (1 + s)−k−1ds

= 2n+ 5
2 πCk(ϕ1 + ϕ2V )n−k+ 1

2 ϕ
−n− 3

2
2 B

(
n + 3

2
, k − n − 1

2

)
,

where B is the Beta function (the Euler integral of the first kind) (9) defined by

B(x, y) =
∫ ∞

0

t x−1

(1 + t)x+y
dt, 	 x > 0, 	 y > 0.

Here, from the third line to the fourth, we have put s = |v|2
2

ϕ2

ϕ1+ϕ2V and have used

the fact that s increases with |v| increasing because of ϕ2 > 0 and E0 > 0. With
this result and the identity (9)

B(x, y) = �(x)�(y)

�(x + y)
, 	 x > 0, 	 y > 0,

with � being the Gamma function, the tensors A and D in the symmetric diffusion
equation (16) are finally written as

Ai j = 8

3

√
2πC B

(
5

2
, k − 5

2

)
(ϕ1 + ϕ2V )−k+ 1

2 ϕ
− 7

2
2

[(
k − 3

2

) (
k − 5

2

)
ϕ2

2δi1δ j1

+
(

k − 5

2

)(
kϕ2V + 3

2
ϕ1

)
ϕ2(δi1δ j2 + δi2δ j1)

+
(

k(k − 1)(ϕ2V )2 + 3kϕ1ϕ2V + 15

4
ϕ2

1

)
δi2δ j2

]
,

D
m
i j = 16

5

√
2πC B

(
7

2
, k − 7

2

)
(ϕ1 + ϕ2V )−k+ 3

2 ϕ
− 9

2
2

[(
k − 5

2

) (
k − 7

2

)
ϕ2

2δi1δ j1

+
(

k − 7

2

)(
kϕ2V + 5

2
ϕ1

)
ϕ2(δi1δ j2 + δi2δ j1)

+
(

k(k − 1)(ϕ2V )2 + 5kϕ1ϕ2V + 35

4
ϕ2

1

)
δi2δ j2

]
δ
m .

In the same way, the coefficients An’s (n = 0, 1, 2) can be calculated as

An = 2n+ 5
2 πC B

(
n + 3

2
, k − n − 3

2

)
(ϕ1 + ϕ2V )n−k+ 3

2 ϕ
−n− 3

2
2 ,
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and, therefore, are related to an’s as

An = ϕ2

2n + 3
an+1.

Note that, by definition, A0 = ρ0, A1 = 2(E0 − ρ0V ), ϕ1 + ϕ2V = −µ0/θ0, and
ϕ2 = 1/θ0, where µ0 = µ(ρ0, E0 − ρ0V ). These identities lead to the explicit
relation between (µ0, θ0) and (ρ0, e0), where e0 = E0 − ρ0V (or e0 is the leading
term of e f when expanded in the power series of ε). But, since E is E0 with ϕ1 +
ϕ2V and ϕ2 being replaced by −µ/θ and 1/θ , the moments of γ (E) corresponding
to An are calculated as

∫
R3

|v|2nγ (E) dv = 2n+ 5
2 πC B

(
n + 3

2
, k − n − 3

2

)
(−µ/θ )n−k+ 3

2 θn+ 3
2 .

Thus, we have the same relation between (µ, θ ) and (ρ f , e f ) as that between
(µ0, θ0) and (ρ0, e0), because the left-hand side with n = 0 and 1 is no other
than ρ f and 2e f .4 In this way, we obtain explicit relation between (µ, θ )
and (ρ f , e f )

ρ f = 4
√

2πC B

(
3

2
, k − 3

2

)
(−µ)−k+ 3

2 θ k,

e f = 4
√

2πC B

(
5

2
, k − 5

2

)
(−µ)−k+ 5

2 θ k,

or its inverse

µ(ρ f , e f ) = −2

3

(
k − 5

2

)
e f

ρ f
,

θ (ρ f , e f ) =
⎛
⎝

(
2
3

(
k − 5

2

))k− 5
2

4
√

2πC B
(

5
2 , k − 5

2

)
(

e f

ρ f

)k− 5
2

e f

⎞
⎠

1
k

.

Note that the chemical potential µ is negative. Further, in the present example, we
can obtain explicit expressions for a1/θ

0, ā1/θ
0, and Ā1 in terms of ρ0 and E0 as

a1

θ0
= 3ρ0,

ā1

θ0
= 5E0 − 2ρ0V,

4 The parallel discussion given here is necessary also in the following examples when we show the
relation between (µ, θ ) and (ρ f , e f ), though we do not refer to it.
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Ā1 = 2(E0 − ρ0V )

(
V + 5

3

k − 5
2

k − 7
2

E0 − ρ0V

ρ0

)
.

Therefore, the diffusion equations (11) and (12) are also written explicitly as

∂tρ
0 −2

3
∇x ·

(
∇x (E0 − ρ0V ) + 3

2
ρ0∇x V

)
= 0,

∂tE0 −2

3
∇x ·

(
∇x (E0 − ρ0V )

(
V + 5

3

k − 5
2

k − 7
2

E0 − ρ0V

ρ0

)
+ 3

2
E0∇x V

)
= 0.

Example 4.2. A cut-off power with positive exponent, γ (E) = C(E2 − E)k
+,

with E2, C , and k being positive constants.
First, the coefficients an’s (n = 0, 1, 2, 3) are calculated as

an := −
∫

R
3
|v|2n γ̇ (E0) dv

= 4πCk

∫ √
2(E2−ϕ1−ϕ2 V )

ϕ2

0
|v|2(n+1)

(
E2 − ϕ1 − ϕ2V − 1

2
ϕ2|v|2

)k−1

d|v|

= 2n+ 5
2 πCk(E2 − ϕ1 − ϕ2V )k+n+ 1

2 ϕ
−n− 3

2
2

∫ 1

0
sn+ 1

2 (1 − s)k−1ds

= 2n+ 5
2 πCk(E2 − ϕ1 − ϕ2V )k+n+ 1

2 ϕ
−n− 3

2
2 B

(
n + 3

2
, k

)
.

Here, in the last line, we have used another integral representation of the Beta
function: (9)

B(x, y) =
∫ 1

0
t x−1(1 − t)y−1dt, 	 x > 0, 	 y > 0.

With this result and the same identity as in the previous example, the tensors A
and D in the diffusion equation (16) are written as

Ai j = 8

3

√
2πC B

(
5

2
, k+1

)
(E2−ϕ1 − ϕ2V )k+1

2 ϕ
− 7

2
2

[(
k+ 3

2

) (
k+ 5

2

)
ϕ2

2δi1δ j1

+
(

k + 5

2

)(
kϕ2V + 3

2
(E2 − ϕ1)

)
ϕ2(δi1δ j2 + δi2δ j1)

+
(

k(k + 1)(ϕ2V )2 + 3k(E2 − ϕ1)ϕ2V + 15

4
(E2 − ϕ1)2

)
δi2δ j2

]
,
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D
m
i j = 16

5

√
2πC B

(
7

2
, k+1

)
(E2−ϕ1−ϕ2V )k+ 3

2 ϕ
− 9

2
2

[(
k+ 5

2

) (
k + 7

2

)
ϕ2

2δi1δ j1

+
(

k + 7

2

) (
kϕ2V + 5

2
(E2 − ϕ1)

)
ϕ2(δi1δ j2 + δi2δ j1)

+
(

k(k + 1)(ϕ2V )2 + 5k(E2 − ϕ1)ϕ2V + 35

4
(E2 − ϕ1)2

)
δi2δ j2

]
δ
m .

In the same way, An’s (n = 0, 1, 2) can be calculated as

An = 2n+ 5
2 πC B

(
n + 3

2
, k + 1

)
(E2 − ϕ1 − ϕ2V )n+k+ 3

2 ϕ
−n− 3

2
2 ,

and, therefore, are related to an’s as

An = ϕ2

2n + 3
an+1.

Therefore, as in the previous example, we obtain explicit relation between (µ, θ )
and (ρ f , e f )

ρ f = 4
√

2πC B

(
3

2
, k + 1

)
(E2θ + µ)k+ 3

2 θ−k,

e f = 4
√

2πC B

(
5

2
, k + 1

)
(E2θ + µ)k+ 5

2 θ−k,

and its inverse

µ(ρ f , e f ) = −E2θ (ρ f , e f ) + 2

3

(
k + 5

2

) e f

ρ f
,

θ (ρ f , e f ) =
[

4
√

2πC B

(
5

2
, k + 1

) (
2

3

(
k + 5

2

) e f

ρ f

)k+ 5
2

e−1
f

] 1
k

.

Further, in the present example, we again obtain the explicit expressions for a1/θ
0,

ā1/θ
0, and Ā1 in terms of ρ0 and E0 as

a1

θ0
= 3ρ0,

ā1

θ0
= 5E0 − 2ρ0V,

Ā1 = 2(E0 − ρ0V )

(
V + 5

3

k + 5
2

k + 7
2

E0 − ρ0V

ρ0

)
.
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Therefore, the diffusion equations (11) and (12) are written explicitly as

∂tρ
0 −2

3
∇x ·

(
∇x (E0 − ρ0V ) + 3

2
ρ0∇x V

)
= 0,

∂tE0 −2

3
∇x ·

(
∇x (E0 − ρ0V )

(
V + 5

3

k + 5
2

k + 7
2

E0 − ρ0V

ρ0

)
+ 3

2
E0∇x V

)
= 0.

Example 4.3. The Maxwellian distribution γ (E) = e−E .
The coefficients an’s (n = 0, 1, 2, 3) are calculated as

an := −
∫

R
3
|v|2n γ̇ (E0) dv

(
=

∫
R

3
|v|2ne−E0

dv = An

)

= 4πe−ϕ1−ϕ2V

∫ ∞

0
|v|2(n+1) exp

(
−ϕ2

2
|v|2

)
d|v|

= (2π )3/2(2n + 1)!! e−ϕ1−ϕ2V ϕ
−n− 3

2
2 ,

and therefore the tensors A and D in the diffusion equation (16) are written as

Ai j = (2π )3/2 e−ϕ1−ϕ2V ϕ
− 7

2
2

[
ϕ2

2δi1δ j1 +
(
ϕ2V + 3

2

)
ϕ2(δi1δ j2 + δi2δ j1)

+
((

ϕ2V + 3

2

)2
+ 3

2

)
δi2δ j2

]
,

D
m
i j = 3(2π )3/2 e−ϕ1−ϕ2V ϕ

− 9
2

2

[
ϕ2

2δi1δ j1 +
(
ϕ2V + 5

2

)
ϕ2(δi1δ j2 + δi2δ j1)

+
((

ϕ2V + 5

2

)2
+ 5

2

)
δi2δ j2

]
δ
m .

In the present example, since an = An , we obtain explicit relation between
(µ, θ ) and (ρ f , e f ) (see the footnote 4)

ρ f = (2π )
3
2 e

µ

θ θ
3
2 , e f = 3

2
(2π )

3
2 e

µ

θ θ
5
2 ,

and its inverse

µ(ρ f , e f ) = θ (ρ f , e f ) ln
ρ f

[2πθ (ρ f , e f )]
3
2

, θ (ρ f , e f ) = 2

3

e f

ρ f
.
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Further, we can obtain the explicit expressions for a1/θ
0, ā1/θ

0, and Ā1 in terms
of ρ0 and E0 as

a1

θ0
= 3ρ0,

ā1

θ0
= 5E0 − 2ρ0V, Ā1 = 2

3

1

ρ0
(E0 − ρ0V )(5E0 − 2ρ0V ),

and consequently the diffusion equations (11) and (12) are written explicitly as

∂tρ
0 −2

3
∇x ·

(
∇x (E0 − ρ0V ) + 3

2
ρ0∇x V

)
= 0,

∂tE0 −2

3
∇x ·

(
1

3
∇x

1

ρ0
(E0 − ρ0V )(5E0 − 2ρ0V ) + 3

2
E0∇x V

)
= 0.

Example 4.4. The Fermi-Dirac distribution γ (E) = (eE + η)−1 with η being a
positive constant.

We start with the calculation of an’s (n = 0, 1, 2, 3).

an := −
∫

R
3
|v|2n γ̇ (E0) dv

= −∂ϕ1

∫
R

3
|v|2nγ (E0) dv(= −∂ϕ1 An(ϕ1, ϕ2))

= −2πη−1

(
2

ϕ2

)n+ 3
2

∂ϕ1

∫ ∞

0

sn+ 1
2

exp(s + ϕ1 + ϕ2V − ln η) + 1
ds

= 2n+ 5
2 πη−1ϕ

−n− 3
2

2 �

(
n + 3

2

)
∂ϕ1

(
Lin+ 3

2
(−ηe−ϕ1−ϕ2V )

)

= −2n+ 5
2 πη−1�

(
n + 3

2

)
Lin+ 1

2
(−ηe−ϕ1−ϕ2V )ϕ

−n− 3
2

2 .

Here Lik is the polylogarithm function(10) (de Jonquiére’s function) defined over
the unit open disk by

Lik(z) =
∞∑

l=1

zl

lk
, |z| < 1, z ∈ C,

and on the whole complex plane by the analytic continuation. We have used the
formulas∫ ∞

0

st

exp(s − ν) + 1
ds = −�(t + 1)Lit+1(−eν), for t > 0, ν ∈ R, (21)

z
d

dz
Lik(z) = Lik−1(z). (22)
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Fig. 1. Polylogarithm function.

The tensors A and D in the diffusion equation (16) are then written as

Ai j = −(2π )
3
2 η−1ϕ

− 7
2

2

[
Li 1

2
(−ξ )ϕ2

2δi1δ j1

+
(

Li 1
2
(−ξ )ϕ2V + 3

2
Li 3

2
(−ξ )

)
ϕ2(δi1δ j2 + δi2δ j1)

+
(

Li 1
2
(−ξ )(ϕ2V )2 + 3Li 3

2
(−ξ )ϕ2V + 15

4
Li 5

2
(−ξ )

)
δi2δ j2

]
,

D
m
i j = −3(2π )

3
2 η−1ϕ

− 9
2

2

[
Li 3

2
(−ξ )ϕ2

2δi1δ j1

+
(

Li 3
2
(−ξ )ϕ2V + 5

2
Li 5

2
(−ξ )

)
ϕ2(δi1δ j2 + δi2δ j1)

+
(

Li 3
2
(−ξ )(ϕ2V )2 + 5Li 5

2
(−ξ )ϕ2V + 35

4
Li 7

2
(−ξ )

)
δi2δ j2

]
δ
m,

where the notation ξ = ηe−ϕ1−ϕ2V has been used. Note that the argument −ξ of the
polylogarithm functions is negative, and thus all of them occurring above always
take a negative value because of the first formula (21) (Fig. 1).

As is obvious from the calculation of an’s above,

An = −2n+ 5
2 πη−1ϕ

−n− 3
2

2 �

(
n + 3

2

)
Lin+ 3

2
(−ηe−ϕ1−ϕ2V ),
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and the relation

An = ϕ2

2n + 3
an+1,

holds again. Therefore,

ρ f = −(2π )
3
2 η−1θ

3
2 Li 3

2
(−ηe

µ

θ ), e f = −3

2
(2π )

3
2 η−1θ

5
2 Li 5

2
(−ηe

µ

θ ),

(see the footnote 4). The inversion of this relation can be performed graphically
or numerically in the following way. First we transform the above relation into

FFD(ξ ) = η

(
3

4π

ρ f

e f

) 3
2

ρ f , θ = 2

3

e f

ρ f
RFD(ξ ),

where

FFD(s) = −Li 3
2
(−s)RFD(s)

3
2 , RFD(s) =

Li 3
2
(−s)

Li 5
2
(−s)

, s > 0.

Remember that η is merely a given positive constant and that Li 1
2
(−ξ ), Li 3

2
(−ξ ),

Li 5
2
(−ξ ) are all negative for ξ > 0. It is easy to show, by the use of (22) and

the Cauchy–Schwarz inequality, that FFD is monotonically increasing while RFD

is monotonically decreasing with ξ (Fig. 2). Therefore the value of ξ is uniquely
determined from the first equation for every given set of values of ρ f and e f . Once
ξ is determined, θ is determined from the second equation. Then µ is obtained
from the relation µ = θ ln(ξ/η). The above process is summarized as

θ = 2

3

e f

ρ f
RFD

(
F−1

FD

(
η

(
3

4π

ρ f

e f

) 3
2

ρ f

))
, µ = θ ln

(
1

η
F−1

FD

(
η

(
3

4π

ρ f

e f

) 3
2

ρ f

))
.

Fig. 2. Monotonic functions FFD(ξ ) and RFD(ξ ) and procedure of inversion.
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With the aid of the functions FFD and RFD, the coefficients a1/θ
0, ā1/θ

0, and
Ā1 in (11) and (12) are expressed as

a1

θ0
= 3ρ0,

ā1

θ0
= 5E0 − 2ρ0V,

Ā1 = 2

[
(E0 − ρ0V )V − 15

4
(2π )3/2η−1(θ0)

7
2 Li 7

2
(−ξ 0)

]
,

with

θ0 = 2

3

E0 − ρ0V

ρ0
RFD(ξ 0), ξ 0 = F−1

FD

(
η

(
3

4π

ρ0

E0 − ρ0V

) 3
2

ρ0

)
,

and the diffusion equations (11) and (12) are written as

∂tρ
0 − 2

3
∇x ·

(
∇x (E0 − ρ0V ) + 3

2
ρ0∇x V

)
= 0,

∂tE0 − 2

3
∇x ·

(
∇x

[
(E0 − ρ0V )V − 15

4η
(2π )3/2(θ0)

7
2 Li 7

2
(−ξ 0)

]
+ 3

2
E0∇x V

)
= 0.

The density ρ0 and energy E0 may be obtained from the relations to ϕ1 and ϕ2 that
solve the symmetric diffusion equation (16):

ρ0 = −(2π )
3
2 η−1ϕ

− 3
2

2 Li 3
2
(−ηe−ϕ1−ϕ2V ),

E0 − ρ0V = −3

2
(2π )

3
2 η−1ϕ

− 5
2

2 Li 5
2
(−ηe−ϕ1−ϕ2V ).

Example 4.5. The Bose-Einstein distribution γ (E) = (eE − η)−1 with η being
a positive constant such that ηe−E < 1.5

The coefficients an’s (n = 0, 1, 2, 3) are calculated in the same way as the
Fermi-Dirac distribution case as

an := −
∫

R
3
|v|2n γ̇ (E0) dv

= −∂ϕ1

∫
R

3
|v|2nγ (E0) dv(= −∂ϕ1 An(ϕ1, ϕ2))

= −2πη−1

(
2

ϕ2

)n+ 3
2

∂ϕ1

∫ ∞

0

sn+ 1
2

exp(s + ϕ1 + ϕ2V − ln η) − 1
ds

5 Usually, for the Bose–Einstein distribution, η is put unity and µ < 0 is assumed. See, for example,
E. A. Jackson, Equilibrium Statistical Mechanics (Dover, New York, 2000).
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= −2n+ 5
2 πη−1ϕ

−n− 3
2

2 ∂ϕ1

(
�

(
n + 3

2

)
Lin+ 3

2
(ηe−ϕ1−ϕ2V )

)

= 2n+ 5
2 πη−1�

(
n + 3

2

)
Lin+ 1

2

(
ηe−ϕ1−ϕ2V

)
ϕ

−n− 3
2

2 ,

where the formulas (22) and∫ ∞

0

st

exp(s − ν) − 1
ds = �(t + 1)Lit+1(eν), for t > 0, ν < 0, (23)

have been used. Therefore the tensors A and D in the symmetric expression of the
diffusion equation (16) are written as

Ai j = (2π )
3
2 η−1ϕ

− 7
2

2

[
Li 1

2
(ξ )ϕ2

2δi1δ j1

+
(

Li 1
2
(ξ )ϕ2V + 3

2
Li 3

2
(ξ )

)
ϕ2(δi1δ j2 + δi2δ j1)

+
(

Li 1
2
(ξ )(ϕ2V )2 + 3Li 3

2
(ξ )ϕ2V + 15

4
Li 5

2
(ξ )

)
δi2δ j2

]
,

D
m
i j = 3(2π )

3
2 η−1ϕ

− 9
2

2

[
Li 3

2
(ξ )ϕ2

2δi1δ j1

+
(

Li 3
2
(ξ )ϕ2V + 5

2
Li 5

2
(ξ )

)
ϕ2(δi1δ j2 + δi2δ j1)

+
(

Li 3
2
(ξ )(ϕ2V )2 + 5Li 5

2
(ξ )ϕ2V + 35

4
Li 7

2
(ξ )

)
δi2δ j2

]
δ
m .

It is easy to see that the argument ξ of the polylogarithms above is in (0, 1), so
that they are positive and monotonically increases with ξ .

As is obvious from the derivation of an’s above,

An = 2n+ 5
2 πη−1�

(
n + 3

2

)
Lin+ 3

2
(ηe−ϕ1−ϕ2V )ϕ

−n− 3
2

2 ,

and the relation

An = ϕ2

2n + 3
an+1,

holds again. With these results, we have

ρ f = (2π )
3
2 η−1θ

3
2 Li 3

2
(ηe

µ

θ ), e f = 3

2
(2π )

3
2 η−1θ

5
2 Li 5

2
(ηe

µ

θ ),

(see the footnote 4). The inversion of this relation can be performed graphically
or numerically in the same way as in Example 4.4. We first transform the above
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Fig. 3. Monotonic functions FBE(ξ ) and RBE(ξ ) and procedure of inversion.

relation into

FBE(ξ ) = η

(
3

4π

ρ f

e f

) 3
2

ρ f , θ = 2

3

e f

ρ f
RBE(ξ ),

where

FBE(s) = Li 3
2
(s)RBE(s)

3
2 , RBE(s) =

Li 3
2
(s)

Li 5
2
(s)

, 0 < s < 1.

The functions FBE and RBE are monotonically increasing with ξ (Fig. 3), which
is easily shown by the use of (22) and the Cauchy–Schwarz inequality. Therefore
the value of ξ is uniquely determined from the first equation for every given set of
values of ρ f and e f , and once ξ is determined, θ is determined from the second
equation. Then µ is obtained from the relation µ = θ ln (ξ/η). This process is
summarized as

θ = 2

3

e f

ρ f
RBE

(
F−1

BE

(
η

(
3

4π

ρ f

e f

) 3
2

ρ f

))
, µ = θ ln

(
1

η
F−1

BE

(
η

(
3

4π

ρ f

e f

) 3
2

ρ f

))
.

Finally, with the aid of FBE and RBE, the coefficients a1/θ
0, ā1/θ

0, and Ā1 in
(11) and (12) are expressed as

a1

θ0
= 3ρ0,

ā1

θ0
= 5E0 − 2ρ0V,

Ā1 = 2

[
(E0 − ρ0V )V + 15

4
(2π )

3
2 η−1(θ0)

7
2 Li 7

2
(ξ 0)

]
,
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with

θ0 = 2

3

E0 − ρ0V

ρ0
RBE(ξ 0), ξ 0 = F−1

BE

(
η

(
3

4π

ρ0

E0 − ρ0V

) 3
2

ρ0

)
,

and the diffusion equations (11) and (12) are written as

∂tρ
0 −2

3
∇x ·

(
∇x (E0 − ρ0V ) + 3

2
ρ0∇x V

)
= 0,

∂tE0 −2

3
∇x ·

(
∇x

[
(E0 − ρ0V )V + 15

4η
(2π )3/2(θ0)

7
2 Li 7

2
(ξ 0)

]
+ 3

2
E0∇x V

)
= 0.

The density ρ0 and the energy E0 may be obtained from the relations to ϕ1 and ϕ2

that solve the symmetric diffusion equation (16):

ρ0 = (2π )
3
2 η−1ϕ

− 3
2

2 Li 3
2
(ηe−ϕ1−ϕ2V ),

E0 − ρ0V = 3

2
(2π )

3
2 η−1ϕ

− 5
2

2 Li 5
2
(ηe−ϕ1−ϕ2V ).

5. CONCLUSION

We proposed BGK-type relaxation kinetic models with a general Gibbs state
that preserve the mass and energy. The present contribution is along the line of
the work by Dolbeault, Markowich, Oelz, and Schmeiser. (6) Under the diffusive
scaling, we performed formal asymptotic analysis and derived a set of diffusion
equations that describes the mass and energy transports. The conservative and
symmetric formulations of this set have been presented. We also showed the
entropic properties of both the kinetic and diffusion equations.

Finally, as examples of the general Gibbs state, we took the power law with
negative exponent, the cut-off power with positive exponent, the Fermi–Dirac, and
Bose–Einstein distributions, as well as the conventional Maxwellian, and derived
the diffusion equations that could be useful in modeling the transports in porous
media, in astrophysics, in semiconductor physics, etc.
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